CLIP-170/Tubulin-Curved Oligomers Coassemble at Microtubule Ends and Promote Rescues
نویسندگان
چکیده
BACKGROUND CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.
منابع مشابه
Dynamic Localization of CLIP-170 to Microtubule Plus Ends Is Coupled to Microtubule Assembly
CLIP-170 is a cytoplasmic linker protein that localizes to plus ends of microtubules in vivo. In this study, we have characterized the microtubule-binding properties of CLIP-170, to understand the mechanism of its plus end targeting. We show that the NH2-terminal microtubule-interacting domain of CLIP-170 alone localizes to microtubule plus ends when transfected into cells. Association of CLIP-...
متن کاملInteractions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior.
CLIP-170 belongs to a group of proteins (+TIPs) with the enigmatic ability to dynamically track growing microtubule plus-ends. CLIP-170 regulates microtubule dynamics in vivo and has been implicated in cargo-microtubule interactions in vivo and in vitro. Though plus-end tracking likely has intimate connections to +TIP function, little is known about the mechanism(s) by which this dynamic locali...
متن کاملLocalized Mechanical Stress Promotes Microtubule Rescue
Microtubule dynamics rely on the properties of tubulin and are regulated by microtubule-associated proteins. GTP-tubulin assembles into hollow polymers, which can depolymerize upon GTP hydrolysis. Depolymerizing microtubules may stop shrinking and resume growth. Such rescues are regulated by microtubule-associated proteins like CLIP-170 and the CLASPs [1, 2]. Microtubule domains prone to rescue...
متن کاملCLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end-binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +...
متن کاملStructural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1.
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004